
t
I

NASA* C&tractor Reparc 178337
ICASE REPORT NO. 87-43

ICASE
IMPLEMENTATION OF AN AD1 METHOD ON PARALLEL COMPUTERS

Raad A. Fatoohi
Chester E. Grosch

Contract No. NAS1-18107
July 1987

(bASA-Ch-178337) I f l E L E M E N T A I I C N OP AI AD1 H87-27446
C E l H O D ON PBBBLLEI CCEPUTEhS Final Beport
(6 A S A) 28 p Avail: " U S EC AC3/NP A01

CSCL 09B Unclas
63/62 0092570

INSTITUTE FOR COMPUTER APPLICATIONS I N SCIENCE AND ENGINEERIE
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronauticsand
Space Administration ---
Hampton, Virginia 23665

IMPLEMENTATION OF AN AD1 METHOD ON PAFULLEL C0MPUTEW

Raad A. Fatoohi and Ckster E. Grosch

Old Dominion University

Norfolk, VA 23508

and

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA 23665

ABSTRACT

In this paper we discuss the implementation of an AD1 method for solving the diffusion equa-

tion on three paralleYvector computers. The computers were chosen so as to encompass a variety

of architectures. They are: the MPP, an SIMD machine with 16K bit serial processors; FLEW32,

an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector pmes-

sm. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the

Fled32 and Clay/;? while the cyclic elimination algorithm is used to solve these systems on the

MPP. The implementation of the method is discussed in relation to these architectures and meas-

ures of the performance on each machine are given. Simple performance models are used to

describe the performance. These models highlight the bottlenecks and limiting factors for this algo-

rithm on these architectures. Finally conclusions are presented.

This research was supported by the National
NASA Contract No. NAS1-18107 while the authors
Research Center, Hampton, VA 23665.

Aeronautics and Space Administration under
were in residence at ICASE, NASA Langley

i

1

1. Introduction

. It appears that future supercomputers will be multiprocessors; in fact some have already

appeared. There are a number of important, unresolved questions conceming these multiprocessor

computers. Among these issues are: should they consist of a few, rather powerful processors or

many, very much less powerful processors, or something in between? Should the new computers

be SIMD or MIh4D? There is a natural expectation that the multiprocessors with a few, powerful

processors will have an MIMD architecture and that the others will have SIMD architectures.

Another issue is the communication among the processors. How the memory is connected to the

processors and how these processors are connected to each other? Should the interconnection

scheme be a lattice, a bus, a switch, or something else? It is sterile at this point to argue what is

the "best" combination of number of processon and power per pmcesor and what is the "best"

interconnection scheme. Rather, carrying out experiments with exir hng multiprocessor computers

would appear to be of greater value.

Despite the fact that the most powerful existing paralleYvector computers can perform at

peak rates of several hundred MFWPS, the average processing rates of many codes are in the

range of 20 to 30 W P S [3]. In part, this can be explained by invoking Amdahl's law,

1 S =
1 +f(R-' - 1)'

where S is the speedup,fis the fraction of the code that can be parallelized/vectorized, and R is the

paralleYvector to scaler speed ratio. Calculations with this formula show that nearly all the code

must be parallelized/vectorized in order to achieve a substantial speedup. It is also clear that

increasing R will only give a very modest improvement for a fixedf.

In this paper we describe the implementation of an AD1 method for the solution of the

diffusion equation on three different parallel architectures. These architectures are: the MPP, an

SIMD machine with 16K serial 1-bit processon; Hex/32, an MIMD machine with 20 processors

based on 32 bit NSC 32032 microprocessors; and Cray/2, an MIMD machine with four powerful

vector processors. The method and two algorithms for solving a set of tridiagonal systems are

2

described in section 2. The implementation of the method on these architectures and simple perfor-

mance models are described in sections 3 through 5. Finally, section 6 contains a comparison of

performance at the problem solving level and some concluding remarks.

3

2. The numerical method

Consider the diffusion equation, .

,

(2.1)

to be solved in 0 c t S Tand the square region R: 0 S x S 1,O S y S 1 with boundary values

at U(O,y), U(l,y), U(x,O), U(x,l). Consider replacing R by a net whose mesh points are denoted by

xi = (i - l w y, = (i-1)Ay where i = 1,2, . . . , N+1; j = 1,2, . . . , M+1. The numerical method

used to approximate equation (2.1) is based on an Alternating Direction Implicit (ADI) method for

solving parabolic equations [l]. This method consists of two half steps to advance the solution one

full step in time. Let At be the full time step and apply the forward difference operator to equation

(2.1) for the time derivative, giving

au - = vu,
at

At
2 w 1 n - vj = -(($ + g Vi), 'J

where only one of the space derivatives is evaluated at the advanced time level; this restriction is

imposed in order to produce a set of tridiagonal equations. Applying the centered second

difference operator in equations (2.2) and (2.3) for the space derivatives, we get

Equations (2.4) and (2.5) can be rewritten as:

a v"'Q I-1 J - (1+2a) c1'2 + a = Fij,

p W;l - (1+2P) $1 + p p & 1 = G,

where

4

G. . ' 4 = -a

a = At I AX)',

P = At I ZAy)',

- (1-2a) Gin - a u$?, (2.9)

(2.10)

(2.1 1)

for i = 1 ,2 , . . . , N+l; j = 1, 2, . . . , M+1. Equation (2.6) represents a set of M+1 independent tri-

diagonal systems (one for each vertical line of the net) each of size N+1. Similarly, equation (2.7)

represents a set of N t 1 independent mdiagonal systems (one for each horizontal line of the net)

each of size M+1. Equation (2.6) is solved for the set {Gln} using the values of U$ while equa-

tion (2.7) is solved for the set {q'} using the computed values of UCln. In order to solve these

two sets of equations, the following boundary conditions are incorporated:

Flj 5 %ln = U(O,yj), F ~ + l j E = U(l,yj),

Gi,l 5 U$' = U(xi,O), Gi8+1 3 U$+i = U(xi,l),

fori = 1, 2, . . . , M+1, and

for i = 1,2 , . . . , N+1.

In brief, the AD1 method is implemented in two steps. In the first step, the set {Fii} is com-

puted, using equation (2.8), followed by solving M-1 tridiagonal systems (excluding the boundary

systems), using equation (2.6). With P1" known, the set {Gi j } is computed, using equation (2.9),

followed by solving N-1 mdiagonal systems (excluding the boundary systems), using equation

(2.7). These two steps are needed to advance the solution one full time step.

The main issue in implementing the AD1 method on a parallel computer is choosing an

efficient algorithm for the solution of mdiagonal systems. The selection of the algorithm depends

on the amount of hardware parallelism available on the computer, storage requirements, and some

other factors. Two algorithms are considered here: Gaussian elimination and cyclic elimination.

Although these algorithms are described in the literature (see [8] for details), they are briefly

described here for the sake of completeness.

Consider solving a single aidiagonal system of n equations,

.

ai x;l + b, xi + ci xA1 = di,

for i = 2, 3 , . . . , n-1, and the boundary conditions,

(2.12)

5

x1 = 4, (2.13)

x,, = d,,. (2.14)

The Gaussian elimination algorithm, based on an LU decomposition of the tridiagonal matrix,

has two stages: the forward elimination and the back substitution. In the forward elimination stage

two auxiliary vectors, w and g, are computed as follows:

w1 = 0.0,

wi = ci / (bi - ~i WC~) ,

81 = dl9

gi = (di - ai gi-1) / (bi -

i = 5 3 , . . . , n-1;

~i-1). i = 2, 3, . . . , n-1.

The values of xi are obtained in the back substitution stage as follows:

(2.15a)

(2.15b)

(2.16a)

(2.16b)

x,, = d,,, (2.17a)

xi = gi - wi x,,, i = n-1, n-2. . . . , 1. (2.17b)

Gaussian elimination is an inherently serial algorithm because of the recurrence relations in

both stages of the algorithm. However, if one is faced with solving a set of independent tridiagonal

systems, then Gaussian elimination will be the best algorithm to use on a parallel computer. This

means that all systems of the set are solved in parallel. In this case we obtain both the minimum

number of arithmetic operations and the maximum parallelism.

The cyclic elimination algorithm, also called odd-even elimination [7] or parallel cyclic

reduction 181, is a variant of the cyclic reduction algorithm [8] applying the reduction procedure to

all of the equations and eliminating the back substitution phase of the algorithm. It can be

described as follows. Assume that n = 2' where t is an integer and

xi = 0, for i 5 0 and i > n. (2.18)
Solving equation (2.12) for xi and the corresponding equations for xkl and xi+l, we have:

(2.19)

(2.20)

~ i + l = (di+l/bi+l) - (ai+l/bi+l) xi - (ci+l/bi+l) ~ i + 2 .

Substitute for xcl and xi+l in equation (2.19), to get

6

(2.21)

(2.22)

a!') = - (ai / bi) (~ i - 1 / bki),

b!') = 1 - (ai / bi) (ci-1 / bj-1) -

= - (ci 1 bi) (ci+l 1 bi+l),

(2.23)

(2.24)

(2.25)

(2.26)

The above process eliminates the odd variables in the even equations and the even variables

in the odd equations by performing elementary row operations. The resulting system is again mdi-

agonal of the same form as equation (2.12) but with different coefficients (ai, bi, ci) and forcing

terms (di). This process can be repeated for r steps (r = log2n) until one set of equations remains.

These equations are

/ b*l) (~ i / bi),

4') = (di / bi) - (ai / bi) (dcl / bi-1) - (ci / bi) (di+l / bi+l).

uf) xi-2r + by) xi + cy) = 4). i = 2,3,. . . , n-1. (2.27)

The terms xb2, and xi+r of equation (2.27) are really zero because they refer to values outside

the range 1 I i I n and by equation (2.18) are zero. Thus equation (2.27) becomes

xi = d? / b?, for i = 2, 3, . . . , n-1. (2.28)

The cyclic elimination procedure therefore requires the computation of new sets of

coefficients and forcing terms, for levels k = 1, 2, . . . , r, from

(2.29)

(2.30)

(2.31)

(2.32)

.

7

(2.33)

followed by computing the values of xi, us& equation (2.28). Note that far k = 1 equations (2.29)

to (2.32) are equivalent to equations (2.23) to (2.26) with 4’) = ai, Go) = bi, c!’) = ci, and 4) = di.

The AD1 procedure to solve equation (2.1) can be applied for any set of boundary and initial

conditions. A test problem is developed by setting U to zero everywhere at r = 0 on the interior

and

U(0,y) = 1 + 0.2501 - 3 ~ 3 ,

U(X,O) = 1 + 0.25(3x’ - 6),
U(1,y) = 1 + 0.25(2~ - 3 9 - 3),

U(41) = 1 + 0.25(31;L - 5x - 2),

for all time. The steady state solution to this problem is,

1 u = 1+- [3 (1 ;L-y ’)+q-6+y] . 4

8

3. Implementation on the MPP

The Massively Parallel Processor (MPP) is a large-scale SJMD processor developed by Goo-

dyear Aerospace Co. for NASA Goddard Space Flight Center [2]. The Mpp is a backend proces-

sor for a VAX-11/780 host, which supports its program development and VO needs.

The MPP has three major units: the Array Unit (ARU), Array Control Unit (ACU), and stag-

ing memory. The ARU is a square array of 128 x 128 bit-serial Processing Elements (PE’s). Each

PE has a local 1024 bit random access memory and is connected to its four nearest neighbors with

programmable edge connections. Arithmetic in each PE is performed in bit serial fashion using a

serial-by-bit adder. The ACU supervises the PE array processing, performs scaler arithmetic, and

shifts data across the PE array. The staging memory is a large scale data buffer that stores, per-

mutes, and transfers data between external devices and the array. The MPP has a cycle time of

100 nsec.

The MPP’s high level language is MPP Pascal [9]. It is a machine-dependent language

which has evolved directly from the language Parallel Pascal defined by Reeves [lo]. Parallel Pas-

cal is an extended version of serial Pascal with a convenient syntax for specifying array operations.

These extensions provide a parallel array data type for variables to be stored in the array memory

and operations on these parallel arrays. One of these operations that is used extensively in this

work is shifting. The shift function shifts data by the amount specified for each dimension and

shifts zeros in at the edges of the array. It has the form shifi (a, AI, A2) where u is the parallel

array to be shifted and kl and kz specify the amount of shift in the first and second dimensions of

U.

The AD1 method, described in section 2, was implemented on the MPP for a 128 x 128 mesh

point problem. In each processor, data corresponding to one mesh point is stored The main pro-

gram as well as the AD1 procedure were written in MPP Pascal. The main program, run on the

VAX, handles input and output, initialization of the computational domain, and calling the AD1

procedure. The AD1 procedure, which was executed entirely on the array, computes the

9

coefficients, forcing terms, and solves two sets of 128 hidiagonal systems. The hidiagonal systems

are solved by the cyclic elimination algorithm, described in section 2, for all rows and all columns.

This is done in parallel on the array with a hidiagonal system of 128 equations being solved on

each row or column. In this case the vectors xi, ai, bi, ci, di of equation (2.12) become the matrices

xij, ay bij, cij. dij. After solving each set of the hidiagonal systems, all points of the domain are

updated except the boundary points. This is implemented by masking out the boundary columns

(or the boundary rows) of the array.

The AD1 procedure is reasonably efficient and requires only 5 parallel arrays of floating point

numbers. The procedure contains mostly matrix operations with a few scaler operations (for com-

puting the coefficients) and has no vector operations. However, the cyclic elimination algorithm

has some hidden defects. For each level of the elimination process, a set of data is shifted off the

array and an equal set of zeros is shifted onto the array. Since all of the processors are executing

the same instruction at every cycle, some of these processors may not be doing useful work; here

they are either multiplying by zero or adding a zero. This is a problem with many algorithms on

SIMD machines.

Table I contains the execution time and the processing rate of the AD1 procedure for the

128 x 128 problem. The processing rate is determined by counting only the arithmetic operations

(addition, multiplication, and division). Data transfer operations, vital as they are in this work, are

not counted as floating point operations. However, all the arithmetic operations including those

operations which do not contribute to the solution are counted.

In order to develop a model for the cost of implementing the AD1 method on the MPP, the

arithmetic operations as well as the data rransfer operations of the method are counted and the cost

of each of these operations on the MPP is measured Table 11 contains the operation counts for one

pass of the AD1 method using the cyclic elimination algorithm. These operations are also required

for the second pass of the method and the total number of operations required for both passes will

be twice the number that is given in Table 11. Table 111 contains the measured values of the ele-

10

mentary operations on the MPP. These values were obtained by measuring the execution time of

each operation using a loop of length 1OOO.

The execution time of the A D 1 method on the MF'P, T, is computed as follows:

Toow : Computation cost,

Tcm : Communication cost,

re : Machine cycle time,

N , : Number of additions,

N,,, : Number of multiplications,

Nd : Number of divisions,

N,,, : Number of shift operations,

N,, : Number of steps involved in all shift operations,

Ca : Cost of each add operation,

C,,, : Cost of each multiply operation,

Cd : Cost of each divide operation,

c,h : Startup cost of shift operation,

C,, : Cost of shifting one step within shift operation.

The values of N, N,,,, Nd, N,h, and N,, are obtained from Table I1 while the values of

C,, C,,,, c d , C,,,, and C,, are obtained from Table 111. Table I V contains the estimated times based

on this model. The computation cost contributes about 75% of the total cost and the communica-

tion cost contributes about 25% of the total cost. The scaler operations have very little impact on

11

the performance of the method since they are inexpensive and may overlap with the a m y opera-

tions. It is also found that the cost of solving the tridiagonal systems represents more than 95% of

the total cost of the method.

The Mpp has two sets of primitives for implementing the elementary arithmetic operations;

IBM and VAX format primitives. The IBM format primitives are more efficient than the VAX for-

mat primitives but were unavailable for MPP Pascal programs at the time this research was con-

ducted. The peak performance rates of the arithmetic operations are computed based on IBM for-

mat primitives. These rates for operations involving 32 bit 128 x 128 floating point matrices are

430 MFLOPS for addition, 216 MFLOPS for multiplication, and 165 MFLOPS for division. If we

use these peak rates and the operation counts from Table 11, the maximum possible rate of the AD1

method will be 236 W P S . Therefore, the measured processing rate is about 57% of the max-

imum possible rate. The peak performance rate is not achieved because of the data transfer costs

and the inefficiency of the VAX format primitives. Previous work [SI showed that the efficiency of

these primitives can have a major impact on the performance of the machine.

12

4. Implementation on the Flex132

The Fled32 is an MIMD shared memory multiprocessor based on 32 bit National Semicon-

ductor 32032 processor 141. The results presented here were obtained using the 20 processor

machine that is now installed at NASA Langley Research Center.

The machine has ten local buses; each connects two processors. These local buses are con-

nected together and to the common memory by a common bus. The 2.25 Mbytes of the common

memory is accessible to all processors. Each of processors 1, 2, and 3 contains 4 Mbytes of local

memory. All other processors contain 1 Mbyte each. Each processor has a cycle time of 100 nsec.

The UNIX operating system is resident in processors 1 and 2. These processors are also used

for software development and for loading and booting the other processors. Processors 3 through

20 run the Multicomputing Multitasking Operating System and are available for parallel processing.

The Flex/32 system software has a special concurrent version of Fortran 77. Concurrent For-

tran comprises the standard Fortran 77 language and extensions that support concurrent processing.

Among the constructs available for implementing parallel programs are: "shared", to identify vari-

ables that are shared between processors; "process", to define and start the execution of a process

on a specified processor; "lock, to lock a shared variable if it is not locked by any other process;

and "unlock", to release a locked variable.

The AD1 method, described in section 2, was implemented on the Fled32 using p processors

with p = 1, 2, 4, 8, and 16 and for problems of sizes n x n mesh points with n = 64, 128, and 256.

The main program as well as the AD1 subroutine were written in Concurrent Fortran.

In order to implement the method in parallel, the domain is decomposed first vertically into n

by n I p strips, for the first pass of the method, and then horizontally into n I p by n strips, for the

second pass of the method. In the first pass, a set of n / p mdiagonal systems (each of n equations)

corresponding to the vertical lines of the net are solved for each strip using the Gaussian elimina-

tion algorithm, described in section 2. In the second pass, likewise, a set of n / p tridiagonal sys-

tems (each of n equations) corresponding to the horizontal lines of the net are solved for each strip

13

using the same algorithm. In our implementation each strip is given to a process. In addition to

initialization of the domain and input and output operations, the main program creates and starts

the execution of the processes on specified processors with each process assigned to a separate pro-

cessor. The processes are spawned only once at the beginning of the program and are used for

both passes of the method. The data corresponding to the domain is stored in the common

memory. Also, the values of the boundary points, computed in the main program, are stored in the

common memory. The forcing terms and the temporary matrices wi, and gii, equations (2.15) and

(2.16), for each strip are computed and stored in the local memory of each processor.

The AD1 method for each strip was implemented by: computing the coefficients and forcing

terms of the tridiagonal systems and solving these systems for all columns first and then for all

rows of that strip. Upon completing a pass, each process signals to the other processes by incre-

menting a counter. All of the processes will wait until each of them has finished the current pass.

A lock is assigned to the counter to ensure this sequence of the events.

The measured execution times and the processing rates for problems of sizes

64 x 64, 128 x 128, and 256 x 256 are listed in Table V. These results were obtained using a

timer with a 20 msec resolution. The speedup and efficiency as functions of the number of proces-

sors of these problems are listed in Table VI. The efficiency of the method ranges from 35% for

the 64 x 64 problem using 16 processors, to 95%, for the 256 x 256 problem using two processors.

The execution time of the AD1 method on p processors of the Fled32, Tp can be modeled as

follows:

Tp = Tcmp + To,

where TCw is the computation time and T o , is the overhead time. Since the load is distributed

evenly between the processors with no extra computations, the computation time on p processors

can be computed by

14

where TI is the computation time using a single processor.

The overhead time is

Tsp is the spawning time of p processors,

T,, is the total common memory access time,

Tqn is the total synchronization time.

These times can be estimated as follows:

p the number of processors,

n the number of mesh points in each dimension,

tsp the time to spawn one process; a reasonable value is 13 msec,

r,, the time to access an element of a matrix in the common memory; a reasonable value is 4

clsec,

ti& the time to lock and unlock a variable in the common memory; a reasonable value is 47

Pet,

k,, the number of times each ship is referenced (kc- = a),

kick the number of times the c o m n variable is locked and unlocked for each process (kkk = 2).

Table VI1 contains the estimated values of the computation time and the overhead times of

the AD1 method. The synchronization time is insignificant because the routines that provide the

locking mechanism are very efficient. The spawning time dominates the overhead time for large

15

number of processm. This resulted in the degradation on the performance of the method for large

number of processors. However, the overhead time is dominated by the common memory access

time for small number of processors. The total estimated times are less than the measured times

(by less than 3%) because of the exclusion of the impact of the memory contention in the analysis.

This contention results from having more than one processor frying to access the common memory

at the same time. A memory contention factor which is a function of p may be included in Tern.

This factor has estimated values ranged from 1.1 for 2 processors to 3.5 for 16 processors. Finally,

it was realized that the common memory access operations may overlap with the spawning opera-

tions during the first pass of the method.

16

5. Implementation on the Cray/2

The Cray/2 is an MIMD supercomouter with four Central Processing Units (CPU), a fore-

ground processor which controls YO and a central memory. The central memory has 256 million

64 bit words organized in four quadrants of 32 banks each. Each CPU has access to one quadrant

during each clock cycle. Each CPU has an internal structure very similar to Crayll with the addi-

tion of 16K words of local memory available for storage of vector and scaler data. The clock cycle

is 4.1 nsec.

The AD1 method, described in section 2, was implemented on one pmessor of the Crayl2 for

domains of sizes ranging from 64 x 64 to 1024 x 1024 mesh points. The code, in each case, was

written and run through the CrayL! vectorizing Fortran compiler, cFT/2 [6]. Each set of the ai&-

agonal systems are solved by the Gaussian elimination algorithm, described in section 2, for all sys-

tems of the set in parallel. This means that each element of wi (equations (2.15)) is computed for

all the tridiagonal systems before moving to the next element. This process is repeated in comput-

ing the elements of gi (equations (2.16)) and xi (equations (2.17)). The implementation requires

that the vectors wi, gi, xi be changed to the matrices wii, gij, xii. When these are done, all state-

ments of the code vectorize fully and the recursion problem of the algorithm is eliminated.

The AD1 method requires that the data is first referenced by vertical lines and then by hor-

izontal lines. The CFU2 compiler stores arrays by incrementing the leftmost index first (column

major order). This means that referencing the data by vertical lines causes no problems because

the increment between data elements is unity. However, in referencing the data by horizontal lines

the increment between the elements will be equal to the number of variables in each column. In

OUT implementation, this number ranges between 64 and 1024. This could cause a major problem

on the Cray/2. The machine has 128 memory banks and consecutive elements of an may are

stored in consecutive banks. Each bank has a cycle time of 57 clock periods. For a memory stride

of 128, for example, words are drawn from the same bank and each word must wait the entire 57

clock periods to be moved from main memory, even if there is no competition for resources from

17

other processors. As a result, strides that are divisible by 128 ur any large power of two result in

major performance reductions. This problem is overcome by storing the data as though it had a

column length one greater than its actual length. Thus for a stride of 129 data elements are stored

in sequential banks with a stride of one (stride of 129 mod 128 banks = 1).

The number of memory access operations can be reduced by using the local memory when-

ever that is possible. Once an array is stored in the local memory, none of its elements can be

changed; all the elements are treated the same. The forcing terms Fij and Gij, equations (2.8) and

(2.9), are stored in the local memory.

Table WI contains the execution time and the processing rate of the AD1 method when the

Qmain size is varied from 64 x 64 through 1024 x 1W mesh points. There is up to 20% offset

on the results depending on the memory traffic and the number of the active processes on the sys-

tem. The processing rate is computed by counting the additions, multiplications, and divisions

only. Division is counted as a single arithmetic operation. The number of arithmetic operations

for one pass of the AD1 method, using the Gaussian elimination algorithm for solving the tridiago-

nal systems, are listed in Table IX. The total number of each operation will be twice the number

that is given in Table IX.

The time required to perform floating point operations, Tf, and memory access operations, T,,,,

on vectors of length L , can be modeled as follows:

where

bl : Next integer greater than or equal to x,

N , : Number of vectors,

18

L, : Length of a floating point functional unit = 23 CPs,

L,,, : Length of data path between main memory and the registers = 56 CPs,

CP : Clock Perid = 4.1 nsec.

Table X contains the results of applying equations (5.1) and (5.2) for the AD1 method. The

number of floating point operations is obtained from Table IX while the number of main memory

access operations is 12 for each pass of the method. The multiplication time includes the time

required for division where it is assumed that each division takes three times the multiplication

time. The cost of scaler operations are not included in the model. The memory access time

represents about 47% of the total estimated time. The estimated time for memory access does not

take into account the competition for memory banks from other processors which causes a lower

data transfer rate. The total estimated time exceeds the measured time for large domains. This is

because for large problems more overlapping between different operations is expected and the

impact of scaler operations is reduced. For these reasons, the performance rate of the method,

Table VIII, increases for large problems.

Because the AD1 method has more multiplications (including divisions) than additions, the

time to implement the method can be considered as a summation of two portions; a portion with

one operational pipeline and a portion with two pipelines. By using Table IX and assuming that

the peak performance rate of one pipeline is 244 MFLOPS, ignoring the vector startup times, the

maximum processing rate of the AD1 method will be 357 MFLOPS. Therefore!, the measured pro-

cessing rate for the 128 x 128 problem is about 20% of the peak performance rate. If the startup

time of the floating point units is included, the measured processing rate for the 128 x 128 problem

will be about 28% of the peak processing rate of 262 MFLOPS. The major problems are accessing

the main memory and the scaler portion of the code.

19

6. Comparisons and Concluding Remarks

The processing rate and execution time (Tables I, V, and WI) are used to compare the per-

formance of the AD1 method on the three parallel architectures. Since two different algorithms are

used to solve the hidiagonal systems, the number of arithmetic operations involved in these algo-

rithms should be taken into consideration. The total number of arithmetic operations required per

each interior point of the 128 x 128 domain for one pass of the method is 97 using the cyclic elim-

ination algorithm (Table II) while it is 15 for the Gaussian elimination algorithm (Table IX). This

is a factor of about 6.5 between these algorithms which makes cyclic elimination the less efficient

algorithm. This explains why for the 128 x 128 problem the Cray/2 outperformed the MPP (by a

factor of about 3.7) with respect to the execution time while the MPP outperformed the Crayn (by

a factor of about 1.8) with respect to the processing rate.

The relative performance rate of the method is another way of measuring the performance.

This is a measure of how well the algorithm has been mapped onto the architecture including the

impact of the software used in the implementation. These relative performance rates for the

128 x 128 problem are 57% on the MPP, 66% on 16 processors of the Flex132, and 28% on the

Crayn. On the MPP, the main problems are the communication cost of the algorithm and the

inefficiency of the primitives used in MPP Pascal. On the Flex132, the main problems are the

spawning cost and the common memory access cost. On the Crayn, the main problems are access-

ing the main memory and the scaler portion of the code.

Another measure of performance is the number of machine cycles required to solve the prob-

lem. This measure reduces the impact of technology on the performance of the machine. For the

128 x 128 problem, the method requires about 237 million cycles on the MPR 1579 million cycles

on the Cray/2; and 7400 million cycles on the Flex132.

The performance model on the MPP was fairly accurate on predicting the execution times of

the method based on the measured values of the elementary operations. The performance model on

the Flex132 showed that the spawning cost and the common memory access cost dominated the

20

overhead cost; although it was hard to estimate the impact of memory accesses since these opera-

tions overlap with other operations. The performance model on the Cray/2 showed the costs of

individual operations and their impacts on the overall performance of the machine.

In summary we have found that the AD1 method can be mapped onto different parallel archi-

tectures. Two different algorithms were used to solve the hidiagonal systems and these algorithms

were chosen to exploit the parallelism available on the architectures. The machine’s hardware was

the main consideration in selecting the algorithm while the software influenced the performance.

21

References

[l] ~ m e s , W. F. , "Numerical Methods for Partial Differential Equations," 2nd ed., Academic

Press, New Yo& 1977, pp. 251-255.

[2] Batcher, K. E., "Design of a Massively Parallel Processor," IEEE Trans. Computers, Vol. C-

29, Sept. 1980, pp. 836-840.

[3] Dongarra, J. J., "Performance of Various Computers Using Standard Linear Equations

Software in a Fortran Environment," Tech. Memo. 23, Argonne National Lab., Argonne, Ill.,

1985.

Fled32 Multicomputer System Overview, Flexible Computer Co., 1986.

Fatoohi, R. A. and Grosch, C. E., "Solving the Cauchy-Riemann Equations on Parallel Com-

puters," ICASE Report No. 87-34, NASA Langley Research Center, Hampm, VA., 1987.

[4]

[5]

[6] Fortran (Cnz) Reference Manual, Cray Research Inc. Publication SR-2007.

[7] Heller, D., "A Survey of Parallel Algorithms in Numerical Linear Algebra," SIAM Review,

Vol. 20, NO. 4, 1978, pp. 740-777.

[8] Hockney, R. W. and Jesshope, C. R., "Parallel Computers: Architecture, Programming and

Algorithms," Adam Hilger, Ltd., Bristol, 1981.

[9] MPP Pascal Programmer's Guide, NASA Goddard Space Flight Center, Sept. 1986.

[lo] Reeves, A. P., "Parallel Pascal: An Extended Pascal for Parallel Computers," J. Parallel &

Distributed Computing, Vol. 1, 1984, pp. 64-80.

22

Problem size (mesh points) Execution time (msec)
128 x 128 23.698

Processing rate (MFLOPS)
134

MPP.

Add Multiply Divide
824 877 1130

Operation

One step shift k step shift
166 134 + 32 k

1. Compute Fij,

eq. (2.8)
2. Compute Aij, Cij, Dij,

eqs. (2.33)
3. Compute u$),
eq. (2.29)

4. Compute b&),
eq. (2.30)

5. Compute cf;),
eq. (2.31)

6. Compute 4:).
eq. (2.32)

7. Compute xi j ,
eq. (2.28)

Computation time
17.809

Total operations
Total omrations for r = 7

Communication time Total estimated time Measured time
6.069 23.878 23.698

Add
2

-

-

2 r

-

2 r

-

4 r + 2
30

Multiply
3

r

2 r

r

2 r

6 r + 3
45

Divide

3 r + l
22

Shift
2

-

r

2 r

r

2 r

-

6 r + 2
44

Steps shifted
2

2' - 1

2 (2' - 1)

2'- 1

2 (2' - 1)

6 (2' - 1) + 2
764

Table 11. Operation counts for one pass of the AD1 method using the cyclic
elimination algorithm for solving the tridiagonal systems, where
i = 1 ,2 , . . . , n , j = 1 ,2 , . . . ,n ,and r=log2n.

Table 111. Measured execution times (in machine cycles) of the elementary
operations on the MPP.

~

Table IV. Estimated and measured times (in milliseconds) of the AD1 method
on the MPP.

23

Problem size

6 4 x 6 4
128 x 128
256 x 256

(mesh points)
Execution time Processing rate

(msec) mops)
340 0.36
740 0.66

2320 0.85

I Number of I 64 x 64 points I 128 x 128 points
efficiency

1 .Ooo
0.913
0.848
0.660
0.349

processors

16

speedup efficiency
1 .Ooo 1 .Ooo
1.874 0.937
3.660 0.915
6.807 0.851

10.486 0.655
Table VI.

speedup
1 .Ooo
1.900
3.722
7.271

13.414

speedup
1 .Ooo
1.827
3.393
5.278
5.588

efficiency
1 .Ooo
0.950
0.93 1
0.909
0.838

No. of
procs.

Computation Spawning Memory
time time time

1
2
4
8

16

- - -
950 26 49
475 52 25
238 104 12
119 208 6

I 1;;; 1 5 1 786
393

3890 104 197
16 1945 208 98

Table VII. Estimated and measured times (in mi

-
1025
552
354
333

1900
1040
560
360
340

time

1
2 3880 26
4 1940 52
8 970 104

16 485 208

- - -
197
98
49
25

-
4103
2090
1123
718

7760
4140
2120
1140
740

-
16372

~ 8225
I 4191

225 1

31 120
16380
8360
4280
2320

24

Addition Multiplication
time time
0.259 0.562
1.066 2.3 10
4.324 9.368

17.414 37.730
69.893 151.430

Problem size
(mesh points)

Total estimated Measured
time time
1.541 1.684
6.327 6.474

25.639 24.270
103.220 94.037
4 14.206 364.248

64x64
128 x 128
256 x 256
512 x 512

1024 x 1024

Execution time
(msec)

1.684
6.474

24.270
94.037

364.248

Processing rate
(MFLOPS)

69
74
80
83
86

Table VIII. Execution times and processing rates for the AD1 method on one
processor of the Cray/2.

I Operation
1. Compute Fij,
eq. (2.8)

2. Compute wij,
eqs. (2.15)

3. Compute gi j ,
eqs. (2.16)

4. Compute xi j ,

Table IX. Operation counts for (

sian elimination algorithm for sol

Problem size
(mesh points)

6 4 x 6 4
128 x ,128
256 x 256
512 x 512

1024 x 1024

Memory
access time

0.720
2.95 1

1 1.947
~ 48.076
i 192.883

Add Multiply *
6 7

le pass of the AD1
ring the tridiagonal

Divide
-

1

1

-

2

method
,ystems.

sing the Gaus-

Table X. Estimated and measured execution times (in milliseconds) of the
method on one processor of the Cray/2.

Report No* NASA CR-178337
ICASE Report No. 87-43

2. Government Accecleion No.

5. Report Date
July 1987

6. Performing Organization Code

,3. Recipient's Catalog No.

’. Author(s)
b a d A. Fatoohi and Chester E. Grosch

Hampton, VA 23665-5225
2. Sponsoring Agency Name and Address

National Aeronautics and Space Admi ni s tra t ion
Washington, D.C. 20546

8. Performing Organization Report No.
t87-43

13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

10. Work Unit No.
505-90-21-01 I.ferf r n Org nstR&e H ~ ~ ~ j e t j # p ~ ~ ~ A$$fYcations in Science

17. Key Words (Suggested by Authors(s))

and Engineering
Mail Stop 132C, NASA Langley Research Center

18. Distribution Statement

21. gg of Pages 19. Security Classif.(o this report)
Unclassified

5. Supplementary Notes

Langley Technical Monitor:
J. C. South

22. Price
A03

Submitted to J. Sci. Comput.

Final Report
6. Abstract

In this paper we discuss the implementation of an AD1 method for solving the
diffusion equation on three parallel/vector computers. The computers were
chosen so as to encompass a variety of architectures. They are: the MPP, an
SIMD machine with 16K bit serial processors; FLEX/32, an MIMd machine with 20
processors; and CRAY/2, an M I M D machine with four vector processors. The
Zaussian elimination algorithm is used to solve a set of tridiagonal systems on
the FLEX/32 and CRAY/2 while the cyclic elimination algorithm is used to solve
these systems on the MPP. The implementation of the method is discussed in
relation to these architectures and measures of the performance on each machine
are given. Simple performance models are used to describe the performance.
rhese models highlight the bottlenecks and limiting factors for this algorithm
on these architectures. Finally conclusions are presented.

AD1 method, MIMD machine, parallel
algorithms, performance analysis,
SIMD machine

62 - Computer Systems
64 - Numerical Analysis

Unclassified - unlimited

For sale by the National Technical Information &mice, Springfield, Virginia. 22161
NASA Laalley Form 63 (June 1985)

